Harmonic analysis and prediction

A. S. Unnikrishnan

• Tidal variations can be represented as a sum of finite number of harmonics

$$H_n \cos(\sigma_n t - g_n)$$
 $\sigma_n = 360 ω_n/2 ∏angular speed in degrees per meansolar hour$

• The frequencies can be expressed as individual, sum or difference between frequencies.

 $\omega_n = i_a \omega_1 + i_b \omega_2 + i_c \omega_3 + i_d \omega_4 + i_e \omega_5 + i_f \omega_6$ where ia, ib etc.. are integers of small values (0,1,2 etc...). For example, for M2,

The numbers are 2,0,0,0,0 and 0 (Doodson numbers)

	Period		Frequency		Angular speed	
			f cycles per mean solar year	σ degrees per mean solar hour	Symbol in rate of radians	Rate of change of
Mean solar day	1.00	mean solar days	1.00	15.0000	ωο	C _s
Mean Iunar day	1.0351	mean solar days	0.9661369	14.4921	ω	G
Sidereal month	27.3217	mean solar days	0.0366009	0.5490	ω2	S
Tropical year	365.2422	mean solar days	0.0027379	0.0411	ω ₃	h
Moon's perigee	8.85	Julian years	0.0003093	0.0046	ω_4	p
Regression of Moon's nodes	18.61	Julian years	0.0001471	0.0022	ω ₅	N
Perihelion	20,942	Julian years			ω ₆	p'

Table 3.2 Basic astronomical periods and frequencies

The frequencies can be expressed as individual, sum or difference between frequencies.

 $2\omega_1 - (\omega_2 - \omega_4)$ indicates N₂

 $2\omega_1 + (\omega_2 - \omega_4)$ indicates L2 (-sign inside the bracket indicates moon's perigee moves backward)

$$\begin{split} & \omega_1 - \omega_2 \quad O_1 \quad \text{lunar} \\ & \omega_1 + \omega_2 \quad \text{also} \quad \omega_0 + \omega_3 \quad \text{K}_1 \quad \text{ is luni solar} \end{split}$$

Phase lag (local)

- Local phase (K) is not much used presently
- K lag of the phase (epoch) of the particular constituent behind the phase of the corresponding equilibrium constituent at the place

uent itself at this time is reckoned from the preceding high was and therefore equals $(V+u-\kappa)$.

Time zone conversion

- fH cos (σ t- G +V)
- Where V is called the astronomical argument, G is the phase lag of the constituent with respect to the equilibrium tide on Greenwich longitude.
- gn is the phase lag for time zone
- G = g+j σ
- Greenwich phase = local time zone phase+ zone shift in hours * constituent speed in degrees per hour
- G is used for co-tidal charts from global tidal models.

Nodal adjustment

Without nodal adjustment, the amplitude of M₂ will increase or decrease by 3.7 percentage.

- H_n f_n cos[σ_nt g_n +(V_n +u_n) where V_n is the phase angle at time zero
- f_n the nodal amplitude factor
- *u_n* the nodal angle
 Nodal corrections are done through f and u
 They are approximately,
- $f = 1-0.0373 \cos \omega_5 t$
- And $u = -2.1 \sin \omega_5 t$
- The node factor and nodal angle are 1.0 and 0.0 for solar constituents.

Analysis of sea level observations

- A time series of sea level observations can be analysed to obtain the amplitudes and phases of major tidal constituents by a least square procedure known as Harmonic analysis.
- This is done by fitting a tidal function with observed R(t)=X(t)-T(t)-Z₀ when summed over all the observed values has a minimum value.
- H_n, g_n are the unknowns, f_n u_n are the nodal adjustments and V_n is the Equilibrium phase angle or argument (For M₂, it is -2s+2h)

Calculation of orbital elements

Table 4.2	The orbital elements used for harmonic
expressions	of the Equilibrium Tide

Mean longitude of the Moon	$s = 218.32 + 481267.88^{\circ} \times T$
Mean longitude of the Sun	$h = 280.47 + 36000.77^{\circ} \times T$
Longitude of lunar perigee	$p = 83.35 + 4069.01^{\circ} \times T$
Longitude of lunar ascending node	$N = 125.04 - 1934.14^{\circ} \times T$
Longitude of perihelion	$p' = 282.94 + 1.72^{\circ} \times T$
	$T = \frac{(Time - 0.5)}{36525}$

T is in units of a Julian century (36,525 mean solar days). *Time* is measured in days from 0 hours UT on 0/1 January 2000. The 0.5 arises because the constants in the five equations refer to midday on 1 January.

Nodal adjustments

 Table 4.3 Basic nodal modulation terms for the major lunar tidal constituents

	f f	u
Mm	1.000-0.130 cos(N)	0.0°
M _f	1.043-0.414 cos(<i>N</i>)	-23.7° sin(N)
Q1, O1	1.009-0.187 cos(N)	10.8° sin(<i>N</i>)
K ₁	1.006-0.115 cos(N)	—8.9° sin(N)
$\begin{array}{l} 2N_{2},\mu_{2},\\ \nu_{2},N_{2},M_{2} \end{array}$	1.000–0.037 cos(N)	-2.1° sin(N)
K ₂	1.024-0.286 cos(N)	-17.7° sin(N)

N = 0 March 1969, November 1987, June 2006, April 2025, September 2043, . . ., at which times the diurnal terms have maximum amplitudes, whereas M_2 is a minimum. M_2 has maximum Equilibrium amplitudes in July 1978, March 1997, October 2015, March 2034, March 2053, . . .

Criterion for Separation of tidal constituents

- Raleigh criterion
- gives the minimum number of days of data required to separate any two constituents. It is given by
- 360/ (diff in angular speeds)
 For instance, to separate M2 from S2, one requires 360/ (30.0-28.984). The unit is in hours
 Ans:

Inference of constituents

- Many constituents cannot be separated with short duration of data. However, past analyses show that minor constituents are related empirically with major. For example, amplitude of K2 is related with S2 using equilibrium theory as 0.27 times that of S2 and no phase lag.
- This method of separation is through 'inference'

Prediction of tides

- Since tides are highly periodic, they can be predicted. The method involves a summation of all the constituents at a given place by making use of the known amplitudes and phases of these constituents.
- $T(t) = ZO + \sum Hn fn cos [\sigma nt-gn + (Vn + un)]$
- Where Z0 is the mean sea level, Hn and gn are the amplitude and phase of the n th constituent. Vn adjusts the phases to allow for astronomical conditions at the time of origin of data. Hnfn accounts for the amplitude, with fn and un accounts for the nodal adjustment.

- Admiralty NP 159 method (using M2, S2, K1 and O1 only four major constituents) predictions are made. The rest of the constituents are calculated by 'inference'
- Various softwares, including 'TASK' (Tidal Analysis Software Kit) uses predictions using constituents, that are obtained by analysis of previous records.

Tide Tables on harmonic constants

- Monaco Tide Tables
- Admiralty Tide Tables, Vol I, II, III
- The above Tables provide information on the amplitudes and phases in standard ports and minor ports worldwide, which can be used for future predictions

Harmonic analysis of currents

 Usually harmonic analysis of currents is done separately for velocity components. The results are shown in the form of tidal ellipses

Phase lag (local)

- This is not much used
- K lag of the phase (epoch) of the particular constituent behind the phase of the corresponding equilibrium constituent at the place

and therefore equals $(V+u-\kappa)$.